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Misinformation
• COVID-19 infodemic: Ilustrate how misinformation can 

cause panic and social division


• Social media the catalyst


• “Free” platform for anyone to speak


• Amplify misinformation propagation due to filter bubbles 
and echo chambers — driven by aggressive 
recommendation system
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Why Detect?
• Call to develop automated methods to identify misinformation, 

so as to alert:


• Users of misleading content


• Journalist of stories that require fact-checking


• Defense agencies of mass influence activities


• Ultimately, detection constitutes the first step to enable other 
forms of corrective measures for countering misinformation
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Two Tasks
Misinformation detection is typically framed as two tasks:
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Sea-level rise is not 
accelerating False

• Automated fact checking: 
given a claim, verify its 
veracity (truthfulness)

• Rumour detection: identify 
unverified stories on social 
media False



Outline
• Automated Fact Checking 

• Task definition, representative methods, datasets


• Rumour Detection 

• Task definition, representative methods, datasets


• Challenges 

• Interpretability, multimodality, multilinguality, 
disinformation
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Automated Fact Checking



Pipeline
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Evidence Retrieval
• Aim: find additional information beyond the claim to 

determine whether it is truthful or not


• “Additional information” can be metadata, text data, 
structured data (e.g. table or tuples), images, etc


• Metadata such as publication source and author profile can 
be very informative


• But does not explain how or why a claim is (un)truthful
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Textual Evidence
• External knowledge source = document collections


• News headlines [Ferreira-2016]


• News articles [Pomerleau-2017]


• Wikipedia [Thorne-2018]


• Web [Baly-2018]


• Fact checking sites (e.g. Snope) [Hanselowski-2019]
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Textual Evidence Retrieval
• Standard IR to retrieve documents/sentences [Thorne-2018b]


• Dense retrievers [Karpukhin-2020]


• Encode query and documents using BERT


• Distance between query and document = cosine similarity


• Trained on QA datasets; objective = learn representations that 
produce high similarity for real QA pairs


• To further improve precision, use another model to re-rank retrieved 
evidence, e.g. stance detection [Thorne-2018b, Hanselowski-2019]
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Structured Knowledge
• External knowledge source = knowledgebases (DBpedia)


• Given a claim expressed in a triple, find paths in the knowledgebase 
that support it [Shiralkar-2017]


•E.g. 
(Berkshire Hathaway,  
keyPerson,  
Warren Buffett) 

• Drawback: knowledgebase 
is not always complete, difficult 
to handle more complex claims
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Pipeline
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Verdict Prediction - Labels
• Binary: true or false


• Multiple classes: true, mostly true, mostly false, false


• Nowadays: refute or support or not enough information 
(based on evidence) [Thorne-2018]
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Verdict Prediction - Methods
• Given evidence, verdict prediction can be seen as a form of 

textual entailment or natural language inference task 
 
 
 

• But we usually have multiple pieces of evidence


• Concatenate them together into a single input string 
[Thorne-2018]
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Antarctica ice melt has 
accelerated by


280% in the last 4 decades


Sea-level rise is not 
accelerating

entails?



Graph-based Reasoning
• Allows verification of more complex claims where we need 

to combine information from multiple evidence
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Graph-based Reasoning
• Reason over graphs based on semantic role labels [Zhong-2020]


• First step: construct the SRL graph
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“Similar” 
nodes



Graph-based Reasoning
• Second step: process SRL graphs from claim and evidence 

with graph networks to predict veracity
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Concatenated claim 
and evidence sentences

initial node vector = average 
XLNet output vectors given a node in claim graph, 

compute a representation 
contextualised in evidence 

sentences

h'(take place) = w1 v(in Los Angeles County, California) + 
                w2 v(The 1992 Los Angeles riots) + 
                 w3 v(as the Rodney King riots) + …

final graph representation = 
mean-pool 

(f(h1, h'1), f(h2, h’2), f(h3, h'3))



Automated Fact Checking:

Datasets



Datasets - Natural Claims
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[Guo-2022]



Datasets - Artificial Claims
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[Guo-2022]



Discussion
• Enabled the development of large/complex models for 

automated fact checking


• Inspired a new wave of fact check datasets based on 
Wikipedia


• Applicability to fact checking real-world claims remains to 
be seen...
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Rumour Detection



Rumour Detection
• Identify unverified stories that are spread on social media


• Uses social features for detection


• e.g. comments/reactions and  
patterns of spread


• Verdict classes:


• rumour vs. non-rumour


• true vs. false vs. unverified
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Early work
• [Ma-2015] train supervised 

classifiers using hand-
engineered features from post 
content, user profile and 
propagation pattern


• A story = a set of tweets related 
to a topic (e.g. Hillary Clinton 
announces 2016 campaign for 
president)
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Graph-based Method
• [Ma-2018] explore recursive networks to model the 

conversations triggered by a tweet
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x′￼2 = GRU(x2, mean-pool(x3, x4))
r′￼= GRU(r, mean-pool(x1, x′￼2))

x′￼1 = GRU(x1, r)
x′￼2 = GRU(x2, r)
x′￼3 = GRU(x3, x′￼2)
x′￼4 = GRU(x4, x′￼2)



BERT-based Method
• [Tian-2020] use BERT to model 

the conversation as a chain


• Capture the order of 
appearance, but not reply-to 
structure


• Tried fine-tuning BERT first for 
stance prediction before rumour 
detection and saw minor 
benefits
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DUCK
• DUCK: Rumour detection with user and comment networks 

[Tian-2022]


• Captures who engages with a story (user network)


• Captures how they react to it (comment network)


• Combination of BERT and graph networks
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Comment Chain
• Models the comments as a stream.


• One-tier transformer: concatenate source post + comments 
and feed to BERT


• Longformer: Same but use longformer instead  to 
accommodate much longer sequence (no truncation of late 
comments)


• Two-tier transformer: first level (BERT) handles the 
concatenated string, second level takes in the [CLS] vector 
(from the first level) for each post
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Comment Tree
• Models the conversation structure


• Use both pretrained language models and graph


• Key idea: use BERT to model a parent-child posts


• Once each parent-child 
is encoded, use graph 
attention networks to 
model the structure
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User Tree
• Use graph attention networks to model the user network


• Key question: how to initialise each user node


• GATrnd: initialise randomly


• GATprf: initialise based on user profile info (e.g. username, 
user description, number of posts)


• GATprf+rel: initialise using representations learned by a 
variational graph autoencoder based on user profile and their 
social network (“followers”)
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Findings
• Comment Chain: Two-tier transformer works best 


• Comment Tree: Using BERT to process parent-child posts 
is helpful


• User Tree: Incorporating social relations gives substantial 
performance gain 


• Full model creates a new state-of-the-art for rumour 
detection across multiple datasets in different languages
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Rumour Detection:

Datasets



Rumour Detection - Datasets
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Dataset Domain #Inputs #Users Reactions Verdict Language
Twitter15 
[Ma-2016] Tweet 1,490 426,501 Comment IDs, Retweet 

IDs
True, False, Unverified, 

Non-rumour English

Twitter16 
[Ma-2016] Tweet 818 251,799 Comment IDs, Retweet 

IDs
True, False, Unverified, 

Non-rumour English

Weibo 
[Ma02017] Weibo 4,664 2,746,818 Metadata, Comments, 

User profiles True, False Chinese

PHEME II 
[Kochkina-2018] Tweet 6,425 50,593 Metadata, Comments, 

Links, User profiles Rumour, non-rumour English

SemEval2019 
[Gorrell-2019]

Tweet, 
Reddit 446 5,666 Metadata, Comments, 

User profiles True, False, Unverified English

CoAID 
[Cui-2020] Tweet 143,009 114,484 Comment IDs True, False

English, 
Spanish, 
Chinese, 

Portuguese 
…

Credit: Lin Tian



Challenges



Interpretability
• Classifying a story as “false” 

is unlikely to be persuasive in 
real applications


• We also need to provide some 
explanation or justification 
why the story is false (or true)
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ClimateFeedback.org

http://ClimateFeedback.org


Justification Production
• Most fact checking or rumour detection models are black-box 

models; not inherently interpretable


• Examine the attention weights to highlight important words in 
posts and salient user features [Shu-2019, Lu-2020]


• Problematic as studies found that removing words with high 
attention has little effect on the final prediction [Pruthi-2020]


• Frame justification production as a generation task [Xing-2022]


• Generated justification may not be faithful to its prediction
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Multimodality
• Information to detect misinformation comes in different 

modality: tables, images, videos, network propagation


• NLP studies largely focus on using just text for detection


• Most datasets focus on providing text as evidence; 
exceptions:


• FEVEROUS includes tables as evidence [Aly-2021]


• That said, if tweet IDs are provided then images can be 
recovered (though many links may no longer be valid)
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Golden labels in 
source dataset

Silver Labels

Posts in target 
language

Fine-tune

Predict

Filtering & 
Balancing

Teacher Model

Student Model

Replace

Final predicted 
labels

Dataset in 
Source 

Language

Test Data

Self-training

Multilinguality
• Vast majority of datasets and 

studies focus on English


• Election misinformation crafted to 
target a particular community in 
the US and Australia [NYT-2022, 
Guardian-2022]


• [Tian-2021] explore self-training to 
zero-shot transfer monolingual 
detection system to other languages
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Rumour Detection via Zero-shot 
Cross-lingual Transfer Learning

• Works for bilingual detection, but won’t 
scale for true multilingual detection for 
many languages


• Due to “curse of multilinguality”


• Performance degrades when adapted 
to many languages because of model 
has fixed capacity


• Multilingual pretrained models with 
language-specific adapters [Pfeiffer-2020]
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Feed-Forward

Multi-head Attention

Subword Embedding

Positional Embedding

Transform
er

Head

Nx

LA1 LA2 LA3



Disinformation
• Misinformation: general term that refers to any false or 

inaccurate information


• Disinformation: misinformation created deliberately to 
deceive


• Current research doesn’t distinguish them, as it’s difficult to 
determine intent
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Twitter Information Operations Archive
• Data released by twitter 

than collects a set of 
users suspected of 
engaging in mass 
influence campaigns 
[Twitter-2018] 

• Rich dataset with over 
10 campaigns from 
different countries and 
languages
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Summary
• Misinformation detection as:


• Automated fact checking


• Rumour detection


• Great surveys on this topic: [Guo-2022], [Zubiaga-2018]
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