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Abstract

Text classifiers are vulnerable to adversarial
examples: originally correctly-classified exam-
ples transformed to be classified incorrectly,
while also meeting some constraints. The domi-
nant approach to creating them—combinatorial
optimisation—is effective, but slow and limited
in its transformations. An alternate approach
is to create adversarial examples by fine-tuning
a pre-trained model, as is commonly done for
similar text-to-text tasks. This approach would
be much quicker and more expressive, but is
unexplored.

In this work we successfully fine-tune a pre-
trained encoder-decoder paraphrase model to
generate a diverse range of coherent adversarial
examples. We train using a simple policy gradi-
ent algorithm and design a multi-faceted reward
function that solves the task while enforcing
constraints and avoiding many “reward hack-
ing” failure cases. We empirically show on two
sentiment analysis datasets that our model has
a higher success rate than the untrained para-
phrase model, and is much more effective than
comparable combinatorial optimisation attacks.
Finally we show how certain design choices
affect the generated examples and discuss the
strengths and weaknesses of the approach.

1 Introduction

Adversarial attacks cause a victim model—an at-
tacked machine learning model—to malfunction
in some specific way. These attacks occur across
domains, pose a real-world security threat1 and
are becoming well-studied (Biggio and Roli, 2018;
Zhang et al., 2020).

In this paper we train a model to perform ad-
versarial attacks on a text classifier. We avoid the
common combinatorial-optimisation approach and
instead attempt to directly train a generative model.

1For example, (Wallace et al., 2020) used adversarial ex-
amples to induce Google Translate to produce vulgar outputs,
word flips, and dropped sentences.

This is a harder task but, if successful, will be
quicker and more powerful.
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Figure 1: Examples of our successful adversarial attack
against a sentiment classifier. On top, the adversarial
examples flip sentiment from the original neutral (blue)
to positive (green), and on bottom, sentiment goes from
the original negative (red) to neutral (blue).

2 Proposed Approach

The goal is to fine-tune a vanilla pre-trained para-
phrase model on a dataset so that it learns to gen-
erate adversarial examples—examples that change
the predicted label of a victim model, while also
keeping all constraints.

We train for a number of epochs. In each train-
ing epoch we generate one paraphrase per original
example and collate these into batches of training
data. We use the batches to calculate a loss func-
tion, which follows the REINFORCE with baseline
algorithm with an additional KL divergence term.
The loss function uses a reward function and a base-
line. These use a set of constraints to determine
if the generated text is valid; examples that fail
receive zero reward. Many of these constraints
use pre-trained models. Figure 2 shows the overall
setup.

We evaluate model performance before training
and also after each training epoch. During evalua-
tion we generate a set of paraphrases per original
example and calculate the attack success rate of
the model across the dataset. We also update the
reward baseline with the average reward across the
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Figure 2: Finetuning the paraphrase model. As input, we use a batch of (original, paraphrase) pairs (Section ??).
We update parameters using the REINFORCE with baseline algorithm, regularised with a KL divergence penalty
(Section ??). We describe the reward function in Section ?? and constraints in Section ??. The reward baseline is
updated at the end of each epoch (Section ??). We accumulate gradients to get a larger effective batch size.

set. We stop training once test set performance
drops below a threshold or after a maximum num-
ber of epochs.

3 Results

Design choices will affect the attack success rate
of the trained model. We tested the effect of two
design choices we thought important. The first was
the decoding sampling temperature during training,
which controls the exploration of the agent. The
second was the evaluation decoding method, which
affects diversity and quality of the generated can-
didate set. We kept constant other parameters and
measured the effect of these two.

3.1 Impact of training on attack success rate
Results. We find that the training procedure im-
proves the attack success rate across all training
conditions. All improvements are statistically sig-
nificant (p < 0.01) according to a bootstrap test,
as recommended by Dror et al. (2018). We found
no difference between the two training decoding
temperature values (τ = 0.85 and τ = 1.15), but
that the decoding method had an effect.

3.2 Comparison with token-modification
adversarial attacks

Results. For a fixed computational budget, the
trained model has a much higher attack success rate
than token-modification attacks; in fact, its attack

success rate is similar to the most computationally
expensive token-modification attack. Moreover the
trained model generates many adversarial examples
per original, which the token-modification cannot
easily do.

4 Conclusion

In this paper we fine-tuned a paraphrase trans-
former to instead generate adversarial paraphrases.
We designed a reward function that encourages vic-
tim model degradation while punishing constraint
violations. The trained model produces more ad-
versarial examples than the untrained model. It is
also much more efficient than comparable token-
modification attacks, and its adversarial examples
are human-preferred. We identified a good evalu-
ation decoding method for the task: diverse beam
search, with a moderate number of beam groups.
We also analysed behaviours of the different decod-
ing methods and the training procedure.
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